6 research outputs found

    Charge Scheduling Strategies for Managing an Electric Vehicle Fleet Parking

    Get PDF
    In this work, different charging scheduling algorithms for managing the recharge process of an electric vehicle fleet in a centralized parking are developed. This tool is tested on a real-world electric fleet which are charged using five charging stations. These algorithms are also use to size the charging infrastructure, determining the minimum number of chargers that are required to charge all electric vehicles

    Using mobility information to perform a feasibility study and the evaluation of spatio-temporal energy demanded by an electric taxi fleet

    Get PDF
    Half of the global population already lives in urban areas, facing to the problem of air pollution mainly caused by the transportation system. The recently worsening of urban air quality has a direct impact on the human health. Replacing today’s internal combustion engine vehicles with electric ones in public fleets could provide a deep impact on the air quality in the cities. In this paper, real mobility information is used as decision support for the taxi fleet manager to promote the adoption of electric taxi cabs in the city of San Francisco, USA. Firstly, mobility characteristics and energy requirements of a single taxi are analyzed. Then, the results are generalized to all vehicles from the taxi fleet. An electrificability rate of the taxi fleet is generated, providing information about the number of current trips that could be performed by electric taxis without modifying the current driver mobility patterns. The analysis results reveal that 75.2% of the current taxis could be replaced by electric vehicles, considering a current standard battery capacity (24–30 kWh). This value can increase significantly (to 100%), taking into account the evolution of the price and capacity of the batteries installed in the last models of electric vehicles that are coming to the market. The economic analysis shows that the purchasing costs of an electric taxi are bigger than conventional one. However, fuel, maintenance and repair costs are much lower. Using the expected energy consumption information evaluated in this study, the total spatio-temporal demand of electric energy required to recharge the electric fleet is also calculated, allowing identifying optimal location of charging infrastructure based on realistic routing patterns. This information could also be used by the distribution system operator to identify possible reinforcement actions in the electric grid in order to promote introducing electric vehicles

    Management Strategies for Electric Vehicle Fleets

    Get PDF
    The research leading to these results has received funding from the EU 7th FP under the project DATA science for SIMulating the era of electric vehicles (DATASIM, FP7-ICT-270833). DATA SIM aims at providing an entirely new and highly detailed spatial-temporal microsimulation methodology for human mobility with the goal to forecast the nation-wide consequences of a massive switch to electric vehicles. The objective of this work is focused in the development of charging management strategies for electric vehicle (EV) fleets. Its purpose is to maximize the integration of EVs in the current electric grid considering their consumption and their charging limits, both temporal and spatially. The main contribution of this work is the development of a novel Peer to Peer Energy Trading System (P2PETS) between EVs in order to reduce the impact of charging EVs over the electric grid

    Peer to peer energy trading with electric vehicles

    Get PDF
    This paper presents a novel peer-to-peer energy trading system between two sets of electric vehicles, which significantly reduces the impact of the charging process on the power system during business hours. This trading system is also economically beneficial for all the users involved in the trading process. An activity-based model is used to predict the daily agenda and trips of a synthetic population for Flanders (Belgium). These drivers can be initially classified into three sets; after discarding the set of drivers who will be short of energy without charging chances due to their tight schedule, we focus on the two remaining relevant sets: those who complete all their daily trips with an excess of energy in their batteries and those who need to (and can) charge their vehicle during some daily stops within their scheduled trips. These last drivers have the chance to individually optimize their energy cost in the time-space dimensions, taking into account the grid electricity price and their mobility constraints. Then, collecting all the available offer/demand information among vehicles parked in the same area at the same time, an aggregator determines an optimal peer-to-peer price per area and per time slot, allowing customers with excess of energy in their batteries to share with benefits this good with other users who need to charge their vehicles during their daily trips. Results show that, when applying the proposed trading system, the energy cost paid by these drivers at a specific time slot and in a specific area can be reduced up to 71%

    Estrategias de gestión de flotas de vehículos eléctricos

    Full text link
    La transición hacia una movilidad eléctrica es uno de los objetivos mundiales en la lucha contra el cambio climático y la reducción de emisiones contaminantes. Esta entrada masiva del vehículo eléctrico representa un reto en todos los niveles de la red eléctrica en la forma de un incremento global de la demanda. A su vez, supone también una gran oportunidad para su uso como recurso distribuido, clave para garantizar la integración de una generación renovable en crecimiento. Esta tesis busca profundizar en el estudio de la electrificabilidad de la movilidad urbana, tanto a nivel de usuario como de la flota de una región. Para ello se hace uso de una herramienta de microsimulación de la movilidad con la que se analiza la posibilidad de que los conductores de la región estudiada puedan adoptar un vehículo eléctrico y su impacto en todos los niveles del sistema eléctrico. Con esta información se han propuesto tres aplicaciones para maximizar la integración del vehículo electrico: un sistema de gestión de puntos de recarga, un algoritmo para reducir desequilibrios en las redes de distribución y un sistema de intercambio de energía entre pares de vehículos. ----------ABSTRACT---------- The transition to an electric mobility is a global objective in the fight against climate change and the reduction of pollutant emissions. This massive entrance of the electric vehicle presents a challenge in all levels of the electric grid in the form of global increase of electric demand. At the same time, this is also a great opportunity for its use as a distributed resource, key to guarantee the integration of a growing renewable generation. The aim of this thesis is to deepen in the study of urban’s mobility electrificacility, both at user level and at regional level. For this analysis a microsimulation mobility tool is employed, examining if the different drivers in the region can use an electric vehicle and its impact in all levels of the electric system. With this information, three applications have been proposed to maximize the integration of the electric vehicle: a system for managing charging points, an algorithm to reduce unbalances in distribution grid and a peer-to-peer energy exchange systems between electric vehicles

    Impacto de las políticas de autoconsumo y recarga del vehículo eléctrico en comunidades energéticas

    No full text
    Autokontsumoa funtsezko tresna da energia berriztagarriak integratzeko eta energiaren sektorean kontsumitzaileen parte-hartze aktiboa sustatzeko. Horretarako, autokontsumoaren erregulazioa hedatu egin behar da, autokontsumo partekatua, komunitate energetikoak, biltegiratzea eta ibilgailu elektrikoak barne hartuz. Artikulu honetan autokontsumo partekatuko eta ibilgailu elektrikoaren kudeaketako hainbat politika aintzat hartzen dituen erkidego baten kostu energetikoa optimizatzeko arazo bat aurkezten da. Arazoa etxeko bost kontsumitzailek osatutako energia-komunitate bati aplikatzen zaio, ibilgailu elektrikoaren erabilerarako, lan-ordutegi eta eguneko kontsumo desberdinak dituztenean. Emaitzek erakusten dute inplikatutako politikek eragin handiagoa dutela komunitatearen prezioan ibilgailu elektrikoei emandako erabilerak baino.Self-consumption is a key element to integrate renewable energies and foster consumer participation in the energy sector. To expand it, self-consumption regulation needs to incorporate policies such as shared self-consumption, energy communities, storage and electric vehicles. In this article, an optimization problem for the total cost of an energy community considering different self-consumption and electric vehicle management policies is presented. The problem is applied to a set of electric vehicle usage scenarios with diverse work schedules and daily consumptions. Results show that the involved policies have a greater impact on the community’s energy cost than the usage of the electric vehicles.El autoconsumo es una herramienta fundamental para integrar energías renovables y fomentar la participación activa de los consumidores en el sector energético. Para ello, la regulación del autoconsumo debe expandirse, incorporando figuras como el autoconsumo compartido, las comunidades energéticas, el almacenamiento y los vehículos eléctricos. En este artículo se presenta un problema de optimización del coste energético de una comunidad que considera diferentes políticas de autoconsumo compartido y gestión del vehículo eléctrico. El problema se aplica a una comunidad de energía compuesta por cinco consumidores domésticos para escenarios de uso del vehículo eléctrico con diferentes horarios de trabajo y consumos diarios. Los resultados muestran que las políticas involucradas tienen mayor impacto en el precio de la comunidad que el uso dado a los vehículos eléctricos
    corecore